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INTRODUCTION 

Coals come in various ranks and from different geological origins. Substantially 
different characteristics are commonly observed for coals of different ranks. Coal samples 
from the same seam can exhibit large variations in their devolatilization and related thermal 
and combustion behavior. Such variations have large impacts to the design and operating 
conditions of coal combustion systems. It is imperative that coals are well characterized 
before their utilization. This normally requires sophisticated instrumentation and special 
expertise, which are not likely available in a single laboratory. Robust methods of predicting 
coal devolatilization behavior before invoking expensive experiments can be of practical 
importance. 

Recently, there have been developments of several coal devolatilization models [I -61, 
which have various capabilities of predicting coal thermal decomposition under practical 
conditions. A common shortcoming of these models is that they require a large set of data 
input, including kinetic parameters, gas precursor compositions and additional parameters 
describing the coal polymeric structure. These input data must be generated based on a 
series of experimental measurements for each coal of interest. Predictions are limited to 
coals that have been studied. This limitation has long been criticized although it originates 
from the complicated nature of the coal structure. On the other hand, some investigators 
have tried to correlate the devolatilization properties to the coal types. For instance, KO et al. 
r ]  and Neavel et al. [8] have developed methods of predicting the upper bound of tar yields, 
&, from coal elemental compositions. The predicted X, can be used as an input parameter 
of general tar kinetic models such as those developed by Serio et al. [9] and Suuberg et al. 
[IO]. Niksa and Kerstein [11.12] have also proposed a correlation method for the 
FLASHCHAIN coal devolatilization model which predicts tar and the total volatile yields in 
pyrolysis based on ultimate analysis. 

This paper presents a general method that provides a direct correlation behnreen coal 
elemental compositions and the input parameters of a general coal devolatilization model, 
FG-DVC 11-31, which can predict, in addition to the tar and total volatile yields, the yields of 
individual gas species, the tar molecular weight distribution, and the char fluidity. This model 
was validated for the eight Argonne Premium coals based on measurements of pyrolysis 
kinetics from TG-FTIR analysis, solvent extraction and solvent swelling to measure 
extractables and initial crosslink density, respectively, Gieselar plastometer experiments to 
measure fluidity, pyrolysis-FIMS to measure the tar molecular weight distribution and ultimate 
analysis to determine the elemental compositions (C, H, N, S. 0) 131. The large number of 
experimental inputs allowed the development of a model which can make detailed predictions 
of coal devolatilization, as indicated above. However, this feature presented a difficulty when 
applying the model to unknown coals. The correlation method presented in this paper 
enables us to apply the FG-DVC model to coals of a wide range of types without prior 
knowledge of them except the elemental analysis, and supports our contention that the FG- 
DVC model is a general model that can perform expeditious evaluations of coal thermal 
decomposition under many heating and pressure conditions. This correlation approach in its 
preliminary form has been implemented into a 2dimensional coal combustion model, PCGC- 
2 1131. After a description of the method, the model predictions are compared with tar yield 
data collected at fast heating rates and various pressures from the literature [7, 14-21], and 
with tar yields at slow heating rates measured with TG-FTIR analysis in our laboratory. 

BACKGROUND 

FG-DVC [1-3] is a general coal devolatilization model that predicts coal thermal 
decomposition into light gases, tar and char. It also predicts other related property changes, 
Le.. coal viscosity and swelling, during pyrolysis. Recent improvements of this model have 
given it the ability to predict gaseous sulfur and nitrogen species evolved during pyrolysis 
1221. The following is just brief description of this model, as the details have been published 
elsewhere 11-3, 22,231. 

Coal has a very complicated structure, which is essentially a mixture of an aromatic 
matrix, side chain components and some loose fragments. The thermal decomposition of the 
coal structure involves many parallel and competitive processes. In modeling these 

569 



processes, FG-DVC uses two submodels. The FG model simulates the thermal evolution of 
various functional groups and the DVC model predicts the depolymerization, vaporization and 
crosslinking processes occurring in the coal polymer network. In the FG submodel, the gas 
evolution from functional group precursors is modeled with parallel first order differential 
equations and a distributed activation energy formulation is used to reflect the diversity of 
coal structures. The thermal evolution of the coal polymer matrix is modeled with a network 
model 121, which consists of nodes and the connections between them. The nodes represent 
the polymer clusters and there are two types of connections between them, i.e.. bonds and 
crosslinks. At elevated temperatures, there is a competition between bond breaking and 
crosslinking. The properties of the network are fully determined by these two competing 
processes through percolation theory 1241. The most important property of the network is the 
molecular weight distribution of the clusters. The heavy molecules remain in the condensed 
phase to become char, while the light ones evaporate to become tar. The vaporization is 
calculated based on a mechanism given by Fletcher 1251. The tar rate is further limited by 
internal transport, which is assumed to be controlled by the total rate of gas species evolution 
plus the light tar [I], This mechanism enables the model to predict the pressure variation of 
tar yields. 

Input parameters are required to describe the coal structure and its evolution kinetics. 
Sets of parameters have been developed for the eight coals provided by the Argonne 
Premium Coal Sample Program [ X I ,  employing various analytical methods, including TG- 
FTIR, solvent swelling and extraction, fluidity, NMR, and FIMS. 

CORRELATION APPROACH 

The behavior of coal when subjected to a physical and chemical analysis or treatment 
exhibits rank dependence in most instances. For example, Solomon et al. [3] have shown a 
consistent variation of coal functional group compositions with rank. The basis of the 
correlation formulation presented here relies on the well-known van Krevelen diagram 1271. 
which indicates that the progress of coalification in terms of the coal’s atomic hydrogen to 
carbon (H/C) and oxygen to carbon (OK) ratios forms a distinctive band in the HIC and O/C 
two dimensional plane. Each coal has a coordinate (OK. H/C) in the van Krevelen diagram. 
Fig. 1 illustrates the variation of the vitrinite reflectance index (v.r.i.) as a function of H/C and 
O K ,  for 45 PSOC coals sponsored by the U. S. Department of Energy. As v.r.i. is commonly 
accepted as a rank indicator, it is reasonable to assume that there exists a correlation 
between rank and elemental composition. Therefore, a parameter for an unknown coal can 
be interpolated from those for a set of coals that are well-studied. These well-defined coals 
are called library coals, a term used by Williams [28]. 

finite element analyses, with 01C and HIC as two rank indicators. Let x be a parameter of an 
unknown coal and xO(0 (i=l,N) are the corresponding parameters of the N library coals, The 
N library coals form a 2 dimensional triangular element mesh in the van Krevelen diagram as 
displayed in Fig. 2, where N is 9 with each node representing a coal. The mesh nodes are 
plotted as filled circles and other symbols in the plot are the coals to be interpolated. Each 
triangle element contains three nodes (coals). If an unknown coal is inside the element J, 
whose three nodal numbers are i (’)J, i (2)J, and i (3)J, the unknown parameter, x, is interpolated 
as 

We propose to use a two dimensional linear interpolation method commonly used in 

where rand  s (Osr, s s l )  are the local coordinates of the unknown coal in element J 
and are determined from the positions of the unknown coal and the three interpolating coals 
in the van Krevelen diagram. Let U denote the point of the unknown coal in the van Krevelen 

formed by nodes ( i (8J ,  i (‘)J, i @ I J ) ,  ( i ( l ) J ,  U, i@’3, and (i(8J. i(5.4, respectively. rand  s are 
calculated as follows 

diagram, A (i ( 1 )  J,  j ( 2 )  . I (3) ), A (i“)J, U, i(”3, and A (i (I) i‘” v) are the areas of the triangles 

\ 

‘I 

\ ’  

The interpolation mesh is composed of nine coals, six of which come from the 
Argonne Premium Coal Sample Program and three of which are PSOC coals (PSOC 1474, 
PSOC 1448, and PSOC 1521). Extensive experimental studies have been carried out on the 
Argonne Premium Coals and the model input parameters are well established 131. 
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Predictions of the pyrolysis yields of these coals under various conditions are in very good 
aWement with the data collected in many types of reactors [29]. The Lewston-Stockton coal 
was not Used because it has a very similar elemental composition to the Pittsburgh Seam 
Coal. The Pocahontas #3 coal was not selected since it is of substantially high rank and is 
far away from the rest of the coals. Three PSOC coals were added to this mesh recently, so 
that a larger area is covered. The functional group compositions and the pyrolysis evolution 
kinetic Parameters of these three coals were obtained based on data from TG-FTIR analysis 
and Solvent extraction experiments performed recently in our laboratory and fluidity data from 
the PSOC coal data base. 

With this scheme, any of the model parameters for the FG-DVC model can be 
interpolated for an unknown coal when its elemental composition is identified. Special 
caution must be used in interpolating the functional group compositions of the oxygen, sulfur 
and nitrogen gases in order to maintain a proper mass closure. For example, the total 
amount of the oxygen containing functional groups is limited by the oxygen content. 
Therefore, instead of interpolating the amounts of oxygen gas precursors directly, only the 
fraction of oxygen in a functional group is calculated and is used to compute the amount of 
this functional group from the oxygen content. The same procedure is followed for the sulfur 
and nitrogen gases. 

TAR YIELD PREDICTIONS 

Tar composes up to about 50% of the total volatiles during coal combustion for most 
coals. The secondary reaction of tar in the system produces soot, PAH, and light gases that 
affect ignition, flame stability and the radiative property of the flame. Tar yields vary with coal 
type and are affected by reactor conditions such as pressure and heating rate. The 
interpolation scheme presented above enables the FG-DVC model to predict the tar yield of a 
coal from its elemental analysis under various pressure and heating rate conditions. To 
verify this capability, tar yield data were assembled from literature and were compared with 
the model predictions. These data were measured with heated grid systems under fast 
devolatilization (heating rates from 100 'Cls to 1000 'Cls) for various coals and pressures 
( I O 4  to 7 MPa). In addition to these data, tar yields from eight PSOC coals were measured 
with a TG-FTIR system at heating rate of 30 'C/min and atmospheric pressure. The details 
of the TG-FTIR system have been presented elsewhere [30]. The data used for model 
verification were selected to span a wide range of coal types, from lignite to low volatile 
bituminous, and pyrolysis conditions. Part of the data set was taken from the tabulation 
given by KO et al (71. 

scheme proposed above and the tar yields from these coals were predicted with the 
pressures and the heating rates specified in these references. Eleven coals from the 
references and the eight PSOC coals are inside the mesh and the standard interpolations 
were performed. The Pocahontas, Illinois #E and North Dakota lignite studied by Suuberg et 
al. [I71 are outside the mesh and were predicted with the input parameters of the 
corresponding Argonne coals. The Alabama bituminous coal studied by Freihaut and Seery 
[I51 and the Beulah Zap coal studied by KO et al. [7] were predicted based on input files used 
for the Argonne Upper Freeport coal and Zap lignite, respectively. The Cobtrip lignite by 
Reitzen [ZI] is close to the edge of the triangle formed by Zap lignite, Wyodak, and Illinois #6 
coals, and was modeled with an elemental composition inside this triangle and closest to 

For each of these coals, the FG-DVC input parameters were interpolated with the 

Colstrip. 

The predictions and the data are compared in Fig 3. The standard errors of the 
estimates are 3.84%, 3.12%, and 3.38% for data collected at vacuum, atmospheric and high 
pressures, respectively. The total standard error of the estimate is 3.35%. This is in the 
same range of experimental scatter commonly encountered in tar measurements. The 
standard error the of estimate, u, is calculated as follows: 

where Y,"' and Yp are the measured and predicted tar yields, and N is the number of data 
points compared. 

Fig. 4 compares the predicted and the measured variations of tar and total volatile 
yields as a function of heating rate for a Linby coal studied by Gibbins and Kandiyoti [ZO]. 
For a Illinois #6 coal studied by Cai et al. 1191, the variations of tar and total volatile yields as 
a function of heating rate and pressure. were predicted and are compared with the data [I91 
in Fig. 5. These plots show that the predictions are in a reasonably good agreement with the 
data. It should be noticed that this is achieved based only on the elemental compositions 
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without further prior knowledge of these coals. 

DISCUSSION 

The success of this interpolation scheme depends on a thorough understanding of the 
library coals. Selection of these library coals must be performed with care so that none of 
these coals has peculiar behavior and deviates from coals in its rank. Although the current 
mesh contains only nine coals, it is one advantage of this method that it can be easily 
extended to include more coals. Adding more coals in the interpolation mesh will certainly 
increase the reliability of the predictions and will allow coverage of a wider range of coal 
types. 

A few large discrepancies were observed for some coals, indicating needs for further 
improvements. Under-predictions of tar yields in vacuum were seen for a group of Pittsburgh 
seam coals, for which the measured tar yields are 39.0% [15], 37.0% [IO] and 37.7% [le] 
and the predicted vacuum tar yields are 33.0%, 29.2% and 32.6%, respectively. However, 
good agreement was obtained at atmospheric pressure for these coals (26.5% [IO] vs. 24.5% 
and 26.5% [I71 vs. 26.9). Since the pressure variations are correctly predicted for other 
coals, the high vacuum tar yields for the Pittsburgh seam coals appear to be caused by a 
mechanism particular to these coals. The model also under-predicts tar yields for PSOC 
1519 and 1492 coals. The Sesser sub-bituminous coal studied by KO et al. [14] is the only 
coal that has a large over-predicted atmospheric tar yields (21.5% [I41 vs. 27.0%). This coal 
seems to be an unusual coal as a relatively low tar yield was also reported by Reitzen [21] 
(1 1 %). For most of the coals the predictions are within 3% of the data and the standard error 
of estimation calculated without the above large discrepancies is 2.54 wt%. 

The basis of this interpolation method is the assumption that coals within the same 
rank behave similarly. Predictions based on this method are targeted at the normal or mean 
behavior of coals within the same rank. Deviations from normal, however, should be 
expected. If the deviation is large and can not be identified with an existing mechanism, the 
behavior of coals becomes unpredictable with the current method. The comparisons 
presented in Figs. 3 to 5 indicate that, for most coals, the deviations are small enough that 
the tar yields are well predicted. Some improvement may be achieved by including one 
additional parameter, such as the volatile matter content, in the correlation. 

The yields and the compositions of the volatile gases are also important. The 
capability of FG-DVC in predicting the total volatile yields has been demonstrated in Figs. 4 
and 5. The amounts of individual gas species are also predicted by FG-DVC along with the 
tar yields and this is one of the chief advantages of this model. However, comparisons are 
more difficult because of the relatively small amount of available data. This will be the 
subject of further studies. 

CONCLUSIONS 

An interpolation method was proposed to correlate the input parameters of a coal 
devolatilization model, FG-DVC. for untested coals, and is conceptually applicable to other 
devolatilization models. This method uses a set of well defined coals (library coals) to form a 
triangular mesh in the van Krevelen diagram. If an unknown coal is within a triangle formed 
by three library coals, the model input parameters for this unknown coal can be interpolated 
from those of the three library coals based solely on a knowledge of the elemental 
composition. This method allows the FG-DVC model to be used for any coal that can be 
interpolated. It is also easy to accommodate more library coals, so that a wider range of coal 
types can be covered. 

The validity of this method was demonstrated by comparing the tar yields 
measurements and predictions for 27 coals under a wide range of pressures and heating 
rates. For most of the coals, the predictions compare very well with the data. 
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Figure 1. Variation of Vitrinite Reflectance of Coals from the PSOC DOE Sample 
Bank as a Function of WC and O/C Ratios in the van Krevelen Diagram. 

0.85 

0.8 

2 0.75 

0.7 

0.65 

0.6 

I 

0.95 

0.9 
a 

- 
- 

- 
- 

- 

- 

+ Arendt and van Heek [16] 
x KO et al. 171 

Frelhaut and Seery I151 
0 Reltzen [21] 
0 Suuberg et al. [17,18] 

V Glbblns and Kandiyotl [ZO] px S 5 3 

- 

0 I 
0.55 z 

0 0.05 0.1 0.15 0.2 0.25 
OK 

Figure 2. The Interpolation Mesh in the van Krevelen Diagram and Coals Used for 
Tar Yield Comparison. Argonne Coals: (1) Beulah Zap; (2) Wyodak; (3) Illinois #6; 
(4) Blind Canyon; (5) Pittsburgh #8; (6) Upper Freeport. PSOC Coals: (7) PSOC 
1448; (8) PSOC 1474; (9) PSOC 1521. 
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Figure 3. Comparison of the Measured and the Predicted Tar Yields for Coals 
Given in Fig. 2. 
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Figure 4. Variations of Tar and Total Volatile Yields as a Function of Heating Rate 
for a Linby Coal Studied by Cai et al. [191. The Lines are Predictions and the 
Symbols are the Data. 
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Figure 5. Variations of Tar and Total Volatile Yields as a Function of a) Heating 
Rate and b) Pressure for a Linby Coal Studied by Cai et al. [191. The Lines are the 
Predictions and the Symbols are the Data. 
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